

GLOVE JUBA - SKST36 JUBA

10 gauge 100% KEVLAR® sleeve.

STANDARDS

CHARACTERISTICS

- The cuff should be worn with an appropriate glove on top.
- The thumb buttonhole ensures that the cuff does not move offering greater protection.
- Resistant to contact heat (100° C for 15"). Its 100%
 Kevlar fiber provides high resistance to cuts, tears and friction while maintaining a high degree of user comfort.

WORKING GLOVES SUITABLE FOR:

- Metal and aluminum industry.
- Automotive.
- · Casting.
- Glass and plywood handling.
- · Stamping.
- · Wire and cable handling.

MORI	E INFORMATION			
Color	Thick	Long	Packaging	
Yellow	Gauge 10	U - 36 cm	12 Unit/package 288 Units/box	

STANDARS

EN 407:2004

EN 407:2004 Protective gloves against thermal risks (Heat and/or fire)

This standard specifies demands and test methods for protective gloves that shall protect against heat and/or fire. The numbers given besides the pictogram indicates the gloves performance for each test in the standard. The higher number the better performance level.

1. FIRE PROPERTIES OF THE MATERIAL

The ignition time and how long the material glows or burns after ignition is measured in this test. If the seam comes apart after an ignition time of 15 seconds, the glove has failed the test.

2. CONTACT HEAT

The glove is exposed to temperatures between + 100°C to + 500°C. Then it is measured how long it takes for the inner side of the glove to become 10°C warmer than it was from the beginning (about 25 ° C degrees). The glove must withstand the increasing temperature of maximum 10°C for at least 15 seconds for an approval.

3. CONVECTIVE HEAT

Here it is measured how long it takes to increase the inside temperature of the glove with 24°C, using a gas lubrication (80kW / m2).

4. RADIANT HEAT

The average time is measured for a heat permeation of 2.5kW / m2.

5 SMALL SPLASHES OF MOLTEN METAL

The test is based on the number of drops of molten metal that generates a temperature increase between the glove material and the skin with 40°C.

6. LARGE QUANTITIES OF MOLTEN METAL

A PVC film is attached to the back of the glove material. Molten iron is poured onto the material. The measurement consists of how many grams of molten iron required to damage the PVC film.

EN388:2016

EN388:2016 Protective gloves against mechanical risks

According to this standard, characteristics such as abrasion resistance. cut resistance, tearing strength, puncture resistance and impact protection are tested. In conjunction with the pictogram, four numbers and one, or two letters, will be displayed. These signs indicate the performance of the glove

ARRASION RESISTANCE

The material is subjected to abrasion by a sandpaper under a determined pressure. The protection level is indicated on a scale of 1 to 4 depending on the number of turns required until a hole appears in the material. The higher the number is, the better the resistance to abrasion.

CUT RESISTANCE, COUP TEST

The cut protection is tested. A knife is passed over the glove material until it cuts through. The protection level is given by a number between 1 and 5, where 5 indicates the highest cut protection. If the material dulls the knife during this test, the cut test ISO 13997(TDM test) shall be performed instead see point 5

TEARING STRENGTH

The force required to tear the glove material apart is measured. The protection level is indicated by a number between 1 and 4, where 4 indicates the strongest material.

PUNCTURE RESISTANCE

Based on the amount of force required to puncture the material with a tip. The protection function is indicated by a number between 1 and 4, where 4 indicates the strongest material.

CUT RESISTANCE, TDM TEST ISO 13997

If the knife gets dull during the coup test, see point 2, this test shall be performed instead. The result is given by a letter, A to F, where F indicates the highest level of protection. If any of these letters is given, this method determines the protection level instead of the coup test.

ISO 13997:1999 - Determination of resistance to cutting by sharp

An alternative cut test recommended for cut protection gloves. Shall be used in EN388:2016 for cut protection gloves where the cut material dulls the cutting knife during testing. A knife cuts with constant speed but increasing force until breakthrough of the cut protection material. Level of protection is given in Newton, the force needed for cut through at 20mm cut length

IMPACT PROTECTION

If the glove has an impact protection, this information is given by the letter P as the 6th and last sign. If no P sign, no impact protection is claimed.

EN 407:2020 - Protection against thermal risks

Change the test method. In the EN407:2004 only the palm is tested, with the EN407:2020 any other point that may come into contact.

Level of performance Contact temperature Threshold time (s)

Pictogram for gloves where flame behavior is not tested

1	100	≥ 15
2	250	≥ 15
3	350	≥ 15
4	500	≥ 15

C - onvective heat

Change the test method. From EN373 to ENISO9185:2007

Level of performance	Heat transfer index hti
1	≥ 4
2	≥ 7
3	≥ 10
4	≥ 18

D - Radiant heat

There are no modifications. The inner layers should not show signs of fusion or have holes.

Level of performance	Heat transfer index t ₃
1	≥ 7
2	≥ 20
3	≥ 50
4	≥ 95

E - Small splashes There are no modifications. The inner and outer layers will not be able to melt or pierce.

Level of performance	Number of drops
1	≥ 5
2	≥ 15
3	≥ 25
4	≥ 35

EN407:2020

Pictogram for gloves where flame behavior has been

Ratified by the Spanish Association for Standardization in June 2020.

Main changes compared to EN407:2004:

- Extension of the scope of the standard to domestic use: oven mitten & gloves.
- Gloves that achieve a level 3 or 4 of any thermal property must reach a minimum level 3 in flame spread. Otherwise, the maximum level that can be reached in the corresponding thermal property will be level 2.
- Propagation limited to flame: prohibition of hole formation. Shortening of maximum post-combustion time for level 1. Change in ignition time.
- Contact heat. Obligation to test any material that comes into contact with heat.
- Resistance to tearing. This essay is included.
- Convective heat . The test is carried out without reinforcement.
 New pictogram, for gloves that do not have flame protection.
- A minimum length is entered when resistance to small molten metal splashes is present.
- After the heat resistance tests, the samples should not show signs of melting or holes.

A - Flame behavior

Change the method and table. To carry out the test, now the ignition time goes from 15 to 10 "and the post-ignition time for level 1, goes from 20 to

Level of performance	Post inflammation time	Post incandescence time
1	≤ 15	No requirement
2	≤ 10	≤ 120
3	≤ 3	≤ 25
4	≤2	≤ 5

F - Big splashes Change the test method

Level of performance	Cast iron (g)
1	30
2	60
3	120
4	300

Glove length

Size	Length
5	290
6	300
7	310
8	320
9	330
10	340
11	350
12	360
13	370